Exercise 1.25

(a) Calculate the kinetic energy, in joules of a $1200-\mathrm{kg}$ automobile moving at $18 \mathrm{~m} / \mathrm{s}$. (b) Convert this energy to calories. (c) When the automobile brakes to a stop is the "lost" kinetic energy converted mostly to heat or to some form of potential energy?

Solution

The kinetic energy of a $1200-\mathrm{kg}$ automobile moving at $18 \mathrm{~m} / \mathrm{s}$ is

$$
\mathrm{KE}=\frac{1}{2}(1200 \mathrm{~kg})\left(18 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=194400 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \approx 1.9 \times 10^{5} \mathrm{~J},
$$

rounding to two significant figures because of $18 \mathrm{~m} / \mathrm{s}$. Convert this energy to calories.

$$
\mathrm{KE}=\frac{1}{2}(1200 \mathrm{~kg})\left(18 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{1 \text { calorie }}{4.184 \mathrm{~J}} \approx 4.6 \times 10^{4} \mathrm{cal} .
$$

Kinetic energy is converted to thermal energy as a result of braking in typical automobiles. More advanced cars don't let it all go to waste, though.

